Sign in →

Test Code HMU24 Heavy Metals Screen, with Reflex, 24 Hour, Urine


Specimen Required


1. For the 48-hour period prior to the start of collection, as well as during the collection, patient should not eat seafood.

2. High concentrations of gadolinium and iodine are known to potentially interfere with most inductively coupled plasma mass spectrometry-based metal tests. If either gadolinium- or iodine-containing contrast media has been administered, a specimen should not be collected for 96 hours.

Supplies: Urine Tubes, 10 mL (T068)

Collection Container/Tube: Clean, plastic aliquot container with no metal cap or glued insert

Submission Container/Tube: Plastic, 10-mL urine tube

Specimen Volume: 6 mL

Collection Instructions:

1. Collect urine for 24 hours.

2. Refrigerate specimen within 4 hours of completion of 24-hour collection.

3. See Metals Analysis Specimen Collection and Transport for complete instructions.

Additional Information: See Urine Preservatives-Collection and Transportation for 24-Hour Urine Specimens for multiple collections.


Useful For

Detecting arsenic, cadmium, mercury, and lead exposure and toxicity using 24-hour urine specimens

Profile Information

Test ID Reporting Name Available Separately Always Performed
ASHU Arsenic, 24 Hr, U Yes, (order ASU24) Yes
CDHMU Cadmium, 24 Hr, U Yes, (order CDU) Yes
HGHU Mercury, 24 Hr, U Yes, (order HGU) Yes
PBHU Lead, 24 Hr, U Yes, (order PBU) Yes

Reflex Tests

Test ID Reporting Name Available Separately Always Performed
SPASU Arsenic Speciation, 24 Hr, U Yes No

Method Name

Triple-Quadrupole Inductively Coupled Plasma Mass Spectrometry (ICP-MS/MS)

Reporting Name

Heavy Metal Scrn w/Reflex, 24 Hr, U

Specimen Type

Urine

Specimen Minimum Volume

3 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Urine Refrigerated (preferred) 7 days
  Frozen  7 days

Reject Due To

  All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Clinical Information

Arsenic:

Arsenic (As) is a naturally occurring element that is usually found in the environment combined with other elements such as oxygen, chlorine, and sulfur. Arsenic combined with these elements is called inorganic arsenic. Arsenic combined with carbon and hydrogen is referred to as organic arsenic. The organic forms (eg, arsenobetaine and arsenocholine) are relatively nontoxic, while the inorganic forms are toxic. The toxic inorganic forms are arsenite (As[3+]/As[III]) and arsenate (As[5+]/As[V]). Inorganic As(V) is readily reduced to inorganic As(III), which is then primarily broken down to less toxic methylated metabolites monomethylarsonic acid and, subsequently, dimethylarsinic acid.

 

People are exposed to arsenic by eating food, drinking water, or breathing air. Of these, food is usually the largest source of arsenic. The predominant dietary source of arsenic is seafood, followed by rice/rice cereal, mushrooms, and poultry. While seafood contains the greatest amounts of arsenic, for fish and shellfish, this is mostly in an organic form of arsenic called arsenobetaine, which is much less harmful. Some seaweed may contain arsenic in the inorganic form, which is more toxic. In the United States, some areas also contain high natural levels of arsenic in rock, which can lead to elevated levels in the soil and drinking water. Occupational (eg, copper or lead smelting, wood treating, or pesticide application) exposure is another source where people may be introduced to elevated levels of arsenic. Lastly, hazardous waste sites may contain large quantities of arsenic and, if not disposed of properly may get into the surrounding water, air, or soil.

 

A wide range of signs and symptoms may be seen in acute arsenic poisoning, including headache, nausea, vomiting, diarrhea, abdominal pain, hypotension, fever, hemolysis, seizures, and mental status changes. Symptoms of chronic poisoning, also called arseniasis, are mostly insidious and nonspecific. The gastrointestinal tract, skin, and central nervous system are usually involved. Nausea, epigastric pain, colic abdominal pain, diarrhea, and paresthesias of the hands and feet can also occur.

 

Since arsenic is excreted predominantly by glomerular filtration, measurement of arsenic in urine is the most reliable means of detecting arsenic exposures within the last several days.

 

Cadmium:

The toxicity of cadmium (Cd) resembles the other heavy metals (arsenic, mercury, and lead) in that it attacks the kidney; kidney dysfunction with proteinuria with slow onset (over a period of years) is the typical presentation. Measurable changes in proximal tubule function, such as decreased clearance of para-aminohippuric acid also occur over a period of years and precede overt kidney failure.

 

Breathing the fumes of cadmium vapors leads to nasal epithelial deterioration and pulmonary congestion resembling chronic emphysema.

 

For nonsmokers, the primary source of cadmium exposure is from the food supply. In general, leafy vegetables such as lettuce and spinach, potatoes and grains, peanuts, soybeans, and sunflower seeds contain high levels of cadmium. For smokers, the most common source of cadmium exposure is tobacco smoke, which has been implicated as the primary sources of the metal leading to reproductive toxicity in both males and females.

 

The concentration of cadmium in the kidneys and in the urine is elevated in some patients exposed to cadmium.

 

Mercury:

The correlation between the levels of mercury (Hg) excretion in the urine and the clinical symptoms is considered poor.

 

Previous thought indicated urine as a more appropriate marker of inorganic mercury because organic mercury represented only a small fraction of urinary mercury. Based on possible demethylation of methylmercury within the body, urine may represent a mixture of dietary methylmercury and inorganic mercury. Seafood consumption can contribute to urinary mercury levels (up to 30%),(1) which is consistent with the suggestion that due to demethylation processes in the human body, a certain proportion of urinary mercury can originate from dietary consumption of fish/seafood.(2)

 

For additional information, see HG / Mercury, Blood

 

Lead:

Increased urine lead (Pb) excretion rate indicates significant lead exposure. Measurement of urine lead excretion rate before and after chelation therapy has been used as an indicator of lead exposure.

 

However, the American College of Medical Toxicology (ACMT 2010) position statement on post-chelator challenge urinary metal testing states that "post-challenge urinary metal testing has not been scientifically validated, has no demonstrated benefit, and may be harmful when applied in the assessment and treatment of patients in whom there is concern for metal poisoning."

 

Blood lead measurement is the best test for clinical correlation of toxicity.

 

For additional information, see PBDV / Lead, Venous, with Demographics, Blood.

Reference Values

ARSENIC:

0-17 years: Not established

≥18 years: <35 mcg/24 h

 

CADMIUM:

0-17 years: Not established

≥18 years: <0.7mcg/24 h

 

MERCURY:

0-17 years: Not established

≥18 years: <2 mcg/24 h

Toxic concentration: >50 mcg/24 h

 

The concentration at which toxicity is expressed is widely variable between patients.

50 mcg/24 h is the lowest concentration at which toxicity is usually apparent.

 

LEAD:

0-17 years: Not established

≥18 years: <2 mcg/24 h

Day(s) Performed

Monday through Friday

Report Available

1 to 3 days

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

82175

82300

83825

83655