Sign in →

Test Code EOSDF Chronic Eosinophilia, Diagnostic FISH, Varies


Ordering Guidance


This test is intended to be ordered when the entire chronic eosinophilia fluorescence in situ hybridization (FISH) panel is needed.

 

If limited chronic eosinophilia FISH probes are preferred, order EOSMF / Chronic Eosinophilia, Specified FISH, Varies.

 

At follow-up, targeted chronic eosinophilia probes can be evaluated based on the abnormalities identified in the diagnostic study. Order EOSMF/ Chronic Eosinophilia, Specified FISH, Varies. and request a specific probe to evaluate the known genomic abnormality.

 

Paraffin embedded tissue testing is not available for these probe sets.



Necessary Information


A reason for testing and a flow cytometry and/or a bone marrow pathology report should be submitted with each specimen. The laboratory will not reject testing if this information is not provided however, appropriate testing and interpretation may be compromised or delayed. If not provided, an appropriate indication for testing may be entered by Mayo Clinic Laboratories.



Specimen Required


Submit only 1 of the following specimens:

 

Preferred

Specimen Type: Bone marrow

Container/Tube:

Preferred: Yellow top (ACD)

Acceptable: Green top (heparin) or lavender top (EDTA)

Specimen Volume: 2-3 mL

Collection Instructions:

1. It is preferable to send the first aspirate from the bone marrow collection.

2. Invert several times to mix bone marrow.

3. Send bone marrow specimen in original tube. Do not aliquot.

 

Acceptable

Specimen Type: Blood

Container/Tube:

Preferred: Yellow top (ACD)

Acceptable: Green top (heparin) or lavender top (EDTA)

Specimen Volume: 6 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in original tube. Do not aliquot.


Useful For

Detecting a neoplastic clone associated with the common chromosome abnormalities seen in patients with myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement (including PDGFRA, PDGFRB, FGFR1, JAK2, and ABL1).

 

Supporting the diagnosis of malignancy if a clone is present

 

An adjunct to conventional chromosome studies.

Method Name

Fluorescence In Situ Hybridization (FISH)

Reporting Name

Chronic Eosinophilia, Diag FISH

Specimen Type

Varies

Specimen Minimum Volume

Blood: 2 mL
Bone Marrow: 1 mL

Specimen Stability Information

Specimen Type Temperature Time Special Container
Varies Ambient (preferred)
  Refrigerated 

Reject Due To

All specimens will be evaluated at Mayo Clinic Laboratories for test suitability.

Clinical Information

The myeloid/lymphoid neoplasms with eosinophilia and rearrangements of PDGFRA, PDGFRB, FGFR1 and JAK2 represent a significantly diverse group of hematologic malignancies. Despite the disparate clinical presentations, which include chronic myeloid neoplasms (chronic myelomonocytic leukemia, chronic myeloproliferative neoplasms, chronic eosinophilic leukemia) versus more acute myeloid and lymphoid neoplasms (acute myeloid leukemia, B- and T-lymphoblastic leukemia/lymphoma and mixed phenotypic acute leukemias), this diagnostic subgroup shares rearrangements involving 4 specific gene regions: PDGFRA, PDGFRB, FGFR1, and JAK2.

 

While conventional chromosome studies may detect many of the rearrangements associated with these gene rearrangements, several are cytogenetically "cryptic," including the most common abnormality involving PDGFRA activation. This one megabase submicroscopic, intrachromosomal deletion results in loss of the CHIC2 gene region with subsequent fusion of neighboring genes FIP1L1 and PDGFRA. In addition to this more common, cryptic deletion, the PDGFRA gene has many translocation partners described (at least 15) that similarly result in PDGFRA upregulation.

 

The PDGFRB, FGFR1, and JAK2 gene regions similarly have numerous translocation/inversion partners described, at least 50 for PDGFRB, 10 for FGFR1, and 40 for JAK2. Despite the significant heterogeneity in gene partners, the identification of PDGFRA, PDGFRB, FGFR1, and JAK2 rearrangements is critical for disease categorization and potential therapeutic intervention. Both PDGFRA and PDGFRB have the potential for response to targeted tyrosine kinase inhibitor therapies such as imatinib mesylate. Similarly, JAK2 rearrangements have the potential for response to targeted inhibitor therapy. Rearrangements of FGFR1 are typically more aggressive and less responsive to targeted inhibitors.

 

While not formally included in the World Health Organization categorization of myeloid/lymphoid neoplasms with PDGFRA, PDGFRB, FGFR1, or JAK2 rearrangements, rearrangements of the ABL1 gene other than with the BCR locus, can result in similar clinical phenotypes. Thus, the ABL1 gene region has been included in this fluorescence in situ hybridization panel evaluation to appropriately interrogate this gene region, particularly since these patients may not be identified by conventional karyotype analysis and may significantly benefit from targeted tyrosine kinase therapies.

Reference Values

An interpretive report will be provided.

Day(s) Performed

Monday through Friday

Report Available

7 to 10 days

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

88271 x11, 88275 x5, 88291 x1-FISH Probe, Analysis, Interpretation; 5 probe sets

88271 x2, 88275 x1–FISH Probe, Analysis; each additional probe set (if appropriate)

Forms

If not ordering electronically, complete, print, and send a Hematopathology/Cytogenetics Test Request (T726) with the specimen.