Test Code EFPO Electrolyte and Osmolality Panel, Feces
Reporting Name
Electrolyte and Osmolality Panel, FUseful For
Workup of cases of chronic diarrhea
Diagnosis of factitious diarrhea (where patient adds water to stool to simulate diarrhea)
Profile Information
Test ID | Reporting Name | Available Separately | Always Performed |
---|---|---|---|
NA_F | Sodium, F | No | Yes |
K_F | Potassium, F | No | Yes |
CL_F | Chloride, F | Yes | Yes |
OSMOF | Osmolality, F | Yes | Yes |
MG_F | Magnesium, F | Yes | Yes |
OG_F | Osmotic Gap, F | No | Yes |
POU_F | Phosphorus, F | Yes | Yes |
Performing Laboratory
Mayo Clinic Laboratories in RochesterSpecimen Type
FecalOrdering Guidance
This test is only clinically valid if performed on watery specimens. In the event a formed fecal specimen is submitted, the test will not be performed.
Specimen Required
Patient Preparation: No barium, laxatives, or enemas may be used for 96 hours prior to start of, or during, collection.
Supplies: Stool containers-24, 48, 72 Hour Kit (T291) Note: A random collection is required, but may be submitted in containers provided for timed collection.
Container/Tube: Stool container
Specimen Volume: 10 g
Collection Instructions:
1. Collect a very liquid, random stool specimen.
2. Do not add preservative to the specimen. If a preservative is added, testing will be canceled.
Specimen Minimum Volume
5 g
Specimen Stability Information
Specimen Type | Temperature | Time | Special Container |
---|---|---|---|
Fecal | Frozen (preferred) | 14 days | |
Refrigerated | 7 days | ||
Ambient | 48 hours |
Reference Values
An interpretive report will be provided
CPT Code Information
82438-Chloride
83735-Magnesium
84302-Sodium
84100-Phosphorus
84999 x 2-Osmolality, Potassium
Clinical Information
The concentration of electrolytes in fecal water and their rate of excretion are dependent upon 3 factors:
-Normal daily dietary intake of electrolytes
-Passive transport from serum and other vascular spaces to equilibrate fecal osmotic pressure with vascular osmotic pressure
-Electrolyte transport into fecal water due to exogenous substances and rare toxins (eg, cholera toxin)
Fecal osmolality is normally in equilibrium with vascular osmolality, and sodium is the major effector of this equilibrium. Fecal osmolality is normally 2 x (sodium + potassium) unless there are exogenous factors inducing a change in composition, such as the presence of other osmotic agents (magnesium sulfate, saccharides) or drugs inducing secretions, such as phenolphthalein or bisacodyl.
Osmotic diarrhea is caused by ingestion of poorly absorbed ions or sugars.(1) There are multiple potential causes of osmotic diarrhea. Measurement of phosphate and/or magnesium in liquid stool can assist in identifying intentional or inadvertent use of magnesium and/or phosphate containing laxatives as the cause.(2-4) The other causes of osmotic diarrhea include ingestion of osmotic agents such as sorbitol or polyethylene glycol laxatives, or carbohydrate malabsorption due most commonly to lactose intolerance. Carbohydrate malabsorption can be differentiated from other osmotic causes by a low stool pH (<6).(5,6)
Non-osmotic causes of diarrhea include bile acid malabsorption, inflammatory bowel disease, endocrine tumors, and neoplasia.(1) Secretory diarrhea is classified as non-osmotic and is caused by disruption of epithelial electrolyte transport when secretory agents such as anthraquinones, phenolphthalein, bisacodyl, or cholera toxin are present. The fecal fluid usually has elevated electrolytes (primarily sodium and chloride) and a low osmotic gap (<50 mOsm/kg). Infection is a common secretory process; however, it does not typically cause chronic diarrhea (defined as symptoms >4 weeks). Differentiating osmotic from non-osmotic causes of diarrhea is the goal of liquid stool testing.(1,7) The primary way this is accomplished is through the measurement of sodium and chloride and calculation of the osmotic gap, which uses an assumed normal osmolality of 290 mOsm/kg rather than direct measurement of the osmolality.
Measurement of osmolality can be useful in the evaluation of chronic diarrhea to help identify whether a specimen has been diluted with hypotonic fluid to simulate diarrhea.(1,8)
Chronic diarrhea with elevations in fecal chloride concentrations are caused by congenital chloridorrhea. This is a rare condition associated with a genetic defect in a protein responsible for transport of chloride ions across the mucosal membranes in the lower intestinal tract in exchange for bicarbonate ions. It plays an essential part in intestinal chloride absorption, therefore mutations in this gene have been associated with congenital chloride diarrhea.(9)
Acquired chloridorrhea is a rare condition which has been described as causing profuse, chloride-rich diarrhea and a surprising contraction metabolic alkalosis rather than metabolic acidosis often associated with typical diarrhea. Contributors to acquired chloridorrhea include chronic intestinal inflammation and reduction of chloride/bicarbonate transporter expression in genetically susceptible persons post-bowel resection and ostomy placement. Acquired chloridorrhea is rare but may be an under-recognized condition in post-bowel resection patients.(10)
Reject Due To
Preservatives added | Reject |
Method Name
OG_F: Calculation
NA_F, K_F, CL_F: Indirect Ion-Selective Electrode (ISE) Potentiometry
OSMOF: Freezing Point Depression
POU_F: Photometric, Ammonium Molybdate
MG_F: Colorimetric Titration
Test Classification
This test has been modified from the manufacturer's instructions. Its performance characteristics were determined by Mayo Clinic in a manner consistent with CLIA requirements. This test has not been cleared or approved by the US Food and Drug Administration.Forms
If not ordering electronically, complete, print, and send a Renal Diagnostics Test Request (T830) with the specimen.
Day(s) Performed
Monday, Thursday